Fully polynomial FPT algorithms for some classes of bounded clique-width graphs
نویسندگان
چکیده
Parameterized complexity theory has enabled a refined classification of the difficulty of NPhard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P4-sparseness). We believe that our most important result is an O(k ·n+m)-time algorithm for computing a maximum matching where k is either the modular-width or the P4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P4-lite graphs, P4-extendible graphs and P4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width.
منابع مشابه
Clique-width and tree-width of sparse graphs
Tree-width and clique-width are two important graph complexity measures that serve as parameters in many fixed-parameter tractable (FPT) algorithms. The same classes of sparse graphs, in particular of planar graphs and of graphs of bounded degree have bounded tree-width and bounded clique-width. We prove that, for sparse graphs, clique-width is polynomially bounded in terms of tree-width. For p...
متن کاملClique-Width and Directed Width Measures for Answer-Set Programming
Disjunctive Answer Set Programming (ASP) is a powerful declarative programming paradigm whose main decision problems are located on the second level of the polynomial hierarchy. Identifying tractable fragments and developing efficient algorithms for such fragments are thus important objectives in order to complement the sophisticated ASP systems available to date. Hard problems can become tract...
متن کاملUpper Bounds on Boolean-Width with Applications to Exact Algorithms
Boolean-width is similar to clique-width, rank-width and NLC-width in that all these graph parameters are constantly bounded on the same classes of graphs. In many classes where these parameters are not constantly bounded, boolean-width is distinguished by its much lower value, such as in permutation graphs and interval graphs where boolean-width was shown to be O(logn) [1]. Together with FPT a...
متن کاملClique-width: on the price of generality
Many hard problems can be solved efficiently when the input is restricted to graphs of bounded treewidth. By the celebrated result of Courcelle, every decision problem expressible in monadic second order logic is fixed parameter tractable when parameterized by the treewidth of the input graph. Moreover, for every fixed k ≥ 0, such problems can be solved in linear time on graphs of treewidth at ...
متن کاملFO Model Checking of Geometric Graphs
Over the past two decades the main focus of research into first-order (FO) model checking algorithms has been on sparse relational structures – culminating in the FPT algorithm by Grohe, Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary to that, except the case of locally bounded clique-width only little is currently known about FO model checking of den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018